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Abstract

Compared to other monoamine neurotransmitters, information on the associa-

tion between the histaminergic system and neuropsychiatric disorders is scarce,

resulting in a lack of histamine-related treatment for these disorders. The current

chapter tries to combine information obtained from genetic studies, neuroimag-

ing, post-mortem human brain studies and cerebrospinal fluid measurements

with data from recent clinical trials on histamine receptor agonists and antagonists,

with a view to determining the possible role of the histaminergic system in neuro-

psychiatric disorders and to pave the way for novel histamine-related therapeutic

strategies.

Keywords

Histamine • Histidine decarboxylase • Histamine receptors • Histamine N-
methyltransferase • Neurodegenerative diseases • Mood disorders • Intellectual

disability

Abbreviations

AD Alzheimer’s disease

CSF Cerebrospinal fluid

H1–4R Histamine 1–4 receptors

HDC L-Histidine decarboxylase

HMT Histamine N-methyltransferase

mRNA Messenger RNA

PD Parkinson’s disease

t-MeHA Tele-Methylhistamine

TMN Tuberomamillary nucleus

1 Introduction

In human genes, polymorphisms of monoamine-related neurotransmitter pathways,

such as in the serotonin transporter genes, are highly associated with depression and

anxiety disorders (Caspi et al. 2003; Homberg and van den Hove 2012; Shan et al.

2014). In addition, the dopaminergic neurons in the substantia nigra tend to be

largely lost in Parkinson’s disease (PD) (Hirsch et al. 1988). Effective treatments

have been developed based upon these monoamine-related changes. For instance,

selective serotonin reuptake inhibitors are widely prescribed for the treatment of
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depression and anxiety-related disorders, and L-dopa was the first-line treatment for

minimizing the motor symptoms of PD. Such pathophysiological relationships

between monoamine and neuropsychiatric disorders are as yet unknown for the

histamine neurotransmitter system, although fundamental studies have shown that

the neuronal histaminergic system is involved in a number of physiological func-

tions, such as the sleep-wake cycle, energy and endocrine homeostasis, sensory and

motor functions, cognition and attention (Haas and Panula 2003; Haas et al. 2008;

Panula and Nuutinen 2013; Shan et al. 2013b), which are all severely affected in

neuropsychiatric disorders.

Recently a series of crucial data were obtained, demonstrating that the key

enzyme for the production of neuronal histamine, histidine decarboxylase (HDC)

was the cause of a rare familial case of Tourette syndrome (Ercan-Sencicek et al.

2010; Castellan Baldan et al. 2014) (details are reviewed in Pittenger 2017). In the

light of the increasing interest in this topic, the time has come to integrate the

scattered information on the pathophysiology of the histamine system in order to

pave the way for novel therapeutic strategies. In this chapter, we bring together

genetic association studies, neuroimaging reports, post-mortem human brain data,

cerebral spinal fluid (CSF) measurement and the results of recent clinical trials to

discuss the possible association of histamine receptors and key enzymes for hista-

mine synthesis and metabolism with neuropsychiatric disorders.

2 Histamine Synthesis, Metabolism and Receptors
in the Brain (Fig. 1)

Neuronal histamine is synthesised by HDC from the amino acid L-histidine, which

is exclusively expressed in the tuberomamillary nucleus (TMN) (Fig. 2) of the

mammalian brain (Panula and Nuutinen 2013). The enzyme histamine N-
methyltransferase (HMT) inactivates histamine by transferring a methyl group

from S-adenosyl-L-methionine to histamine. This is the only known pathway for

the termination of histamine neurotransmission in the mammalian central nervous

system. Histamine is known to have four types of receptors, all of which are G

protein-coupled receptors. Histamine receptors 1–3 (H1–3R) are functionally widely

expressed in the brain. As several recent authoritative reviews (Passani and

Blandina 2011; Schneider et al. 2014a, b; Panula et al. 2015) (for details see

Shiroshi and Kobayashi 2017; Monczor et al. 2017; Schlicker and Kathmann

2017; Neumann 2017) have recently discussed the pharmacology, signal pathways

and physiological function of histamine receptors we are not discussing these here.

Recently accumulated evidence indicates that there is a new G protein-coupled

histamine receptor, H4R, which may also be functionally expressed in the brain

(Connelly et al. 2009; Galeotti et al. 2013; Karlstedt et al. 2013). However, due to

the controversial opinions regarding the lack of specificity of commercialized

antibodies against H4R (Beermann et al. 2012; Schneider and Seifert 2016) and

inability of a H4R agonist to initiate its downstream signal transduction in the cortex

of various species (Feliszek et al. 2015), we will not further discuss this receptor.

Changes in Histidine Decarboxylase, Histamine N-Methyltransferase and. . . 261
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3 HDC

3.1 HDC Expression and Its Circadian Rhythmicity

Technically, the investigation of HDC is hampered by the fact that HDC-antibodies

may also label other monoamine neurons in the substantia nigra, ventral tegmental

area and dorsal raphe, by cross-reacting with aromatic L-amino acid decarboxylase

(Mizuguchi et al. 1990). Therefore, we opted for in situ hybridization of HDC-

messenger RNA (mRNA) for our studies. It should be noted, however, that the

expression level of HDC-mRNA is low-to-moderate in post-mortem brain tissues

(Liu et al. 2010). Consequently, appropriate specificity tests for both in situ probes

and HDC-antibodies are always needed.

Circadian fluctuations of HDC-mRNA expression in the TMN have been

reported, both in human (Shan et al. 2012c) and in rodent (Yu et al. 2014). In a

group of neurodegenerative disorders, including AD, PD, preclinical PD and

Huntington’s disease, we observed a loss of this diurnal HDC-mRNA fluctuation

(Shan et al. 2012c). These diseases showed symptoms of sleep-wake disturbance,

which may, at least partly, be caused by alterations in the arousal-related TMN

[reviewed in Lin (2000) and Shan et al. (2015b)]. It is therefore of interest to note

that the circadian rhythm of HDC-mRNA expression and brain histamine levels

were disturbed in mice that had knockdown of BMAL1, a key clock gene in the

TMN neurons. These mice also showed functionally altered sleep architecture

(Yu et al. 2014).

Fig. 1 Schematic illustration of histamine synthesis, metabolism and receptors. Histamine is

synthesized by the specific enzyme histidine decarboxylase (HDC) in the tuberomamillary nucleus

(TMN). The enzyme histamine N-methyltransferase (HMT) inactivates histamine. There are four

types of histamine receptors (H1–4R). H3R is also an auto-receptor located pre-synaptically. The

functional expression of H4R in the brain is still unclear, which is indicated by a question mark
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Fig. 2 The neuroanatomy of the tuberomamillary nucleus. (a) Medial surface of the human

hypothalamus. Line B indicating the layer for figure (b). Abbreviations: ac anterior commissure,

cm corpus mamillare, lt lamina terminalis, NII optic nerve, oc optic chiasm, or optic recess, III
third ventricle. (b) The human hypothalamus in representative coronal cuts with the tubero-

mamillary nucleus highlighted (adapted from Fernandez-Guasti et al. 2000; Fig. 2). Abbreviations:
BSTp bed nucleus of the stria terminalis posterior, DMN the dorsomedial hypothalamic nucleus,

OT optic tract, Ox optic chiasma, fx fornix, INF infundibular nucleus, LHA lateral hypothalamus,

LV lateral ventricle, NTL lateral tuberal nucleus, TM tuberomamillary nucleus, VMN ventromedial

hypothalamic nucleus, 3V third ventricle. (c, d) Examples of Nissl staining of TM nucleus neurons

with typical neuron profiles, scale bar ¼ 5 μm
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3.2 Unaltered HDC Expression in Both PD and AD

During the preclinical and clinical PD stages, the HDC mRNA levels were fairly

stable, indicating that neuronal histamine production remains intact (Shan et al.

2012d). The total number of histaminergic neurons (Nakamura et al. 1996) and the

enzymatic activity of HDC (Garbarg et al. 1983) were also found to be stable in PD

patients. The stability is further supported by the unaltered cerebrospinal fluid (CSF)

level of the main metabolite of histamine, tele-Methylhistamane (t-MeHA), in PD

patients (Prell et al. 1991). We have also observed that, in AD patients, despite the

significant loss of histaminergic neurons, the TMN function may be largely com-

pensated by the enhanced histamine production by the remaining histamine neurons,

as indicated by the, largely, unalteredHDC-mRNA expression in the TMN (Shan et al.

2012b). The unchanged t-MeHA levels in the CSF of AD patients support this

possibility (Motawaj et al. 2010).

3.3 Strong Increase in HDC Immuno-Reactivity in Narcoleptic
Patients with Cataplexy: Is It Related to Hallucinations?

The significant loss of hypocretin (orexin) neurons in the hypothalamus is the major

cause of narcolepsy with cataplexy (Peyron et al. 2000; Thannickal et al. 2000),

which is characterized by clinical symptoms such as excessive daytime sleepiness,

hypnagogic/hypnopompic hallucinations, sleep paralysis and disturbed nocturnal

sleep (Overeem et al. 2001). Hypnagogic hallucinations occur during the transition

from wakefulness to sleep, and hypnopompic hallucinations during the transition

between sleep and consciousness.

Some clinical observations have shown that up to 65% of patients suffering from

this disorder experienced hallucinations (Fortuyn et al. 2009; Leu-Semenescu et al.

2011). In fact, the symptoms of hypnagogic/hypnopompic hallucinations are so

intense in some narcoleptic patients that they may lead to the misdiagnosis of

schizophrenia (Douglass et al. 1991, 1993; Howland 1997; Talih 2011). This may

also explain that comorbidity of narcolepsy and schizophrenia was often reported

(Canellas et al. 2014; Chen et al. 2014; Plazzi et al. 2015). Narcoleptic animal

models are generally generated based exclusively upon disturbed hypocretin

(orexin) pathways. The major clinical symptoms can be found in these animal

models, such as a short onset of rapid eye movement, cataplexy and fragmented

sleep during the sleep stages (Chemelli et al. 1999; Hara et al. 2001; Tabuchi et al.

2014; Shan et al. 2015a). However, there is no way of telling whether these animals

may have hallucinations. In 2013, two research groups independently observed that

HDC immuno-reactivity is greatly increased in the TMN of narcoleptic patients

(John et al. 2013; Valko et al. 2013), which indicates that not only the hypocretin

(orexin) system, but also other systems, such as the histaminergic system, may be

involved in narcolepsy. It should be noted that none of the narcoleptic animal

models showed this HDC-neuropathology (John et al. 2013). It may be speculated

that the strong increase in the number of histamine neurons may, at least partly,

contribute to hallucinations found in narcolepsy. This possibility is supported by the
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observation that patients with Huntington’s disease, a disease that is reported to be

accompanied by schizophrenia-like symptoms such as delusions and hallucinations

(Tsuang et al. 1998, 2000; Correa et al. 2006), also had a significantly increased

histamine production in the TMN (van Wamelen et al. 2011).

4 Histamine N-Methyltransferase (HMT)

4.1 HMT Mutations and Intellectual Disability

Recently, two homozygous HMT mutations (i.e. p.Gly60Asp and p.Leu208Pro)

were identified in patients suffering from non-syndromic autosomal recessive intel-

lectual disability in two unrelated consanguineous families of Turkish and Kurdish

ancestry (Heidari et al. 2015). The patients from both families did not present with

congenital malformations, facial dysmorphisms, neurological abnormalities or autistic

features.

Subsequently, an in vitro study showed that, although the p.Gly60Asp mutation

does not affect HMT expression at the mRNA or protein level, the enzymatic activity

of HMT, the thermal stability and the affinity of binding to S-adenosyl-L-methionine

were disrupted by a p.Gly60Asp mutation (Heidari et al. 2015). The p.Leu208Pro

mutation was found to result in misfolding and rapid degradation of HMT protein

(Heidari et al. 2015). Subsequent molecular dynamic simulations showed that the p.

Leu208Pro mutation perturbs the helical character and disrupts the interaction with the

adjacent β-strand, which is involved in the binding and correct positioning of hista-

mine (Tongsook et al. 2016). This novel finding calls for detailed behaviour charac-

terization of HMT knockout animals.

4.2 HMT in PD

Animal experiments have shown that increased histamine levels in the substantia

nigra may cause a degeneration of dopaminergic neurons (Vizuete et al. 2000; Liu

et al. 2007). HMT, the brain’s main degradation enzyme for histamine, may thus

play an important role in the pathogenesis of PD, but human studies do not support

such a relationship.

A polymorphism of the HMT gene, rs11558538, causes the amino acid substitu-

tion Thr105Ile and leads to the formation of misfolded HMT protein, which is

cleared by proteasomes, and therefore to a decreased HMT enzymatic activity

(Pang et al. 2001). Individuals who are heterozygous for the 105Ile allele have

30–50% lower HMT activity, while individuals who are homozygous for the 105Ile

have decreased enzyme activity of around 60% (Preuss et al. 1998; Horton et al.

2001; Rutherford et al. 2008). Several previous studies have revealed that the lower

HMT activity alleles protect against PD development (Agundez et al. 2008;

Ledesma et al. 2008; Palada et al. 2012; Yang et al. 2015). A recent meta-analysis,

based upon five available studies involving 2,108 patients with PD and 2,158
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controls, confirmed that decreased histamine metabolism in the central nervous

system could play a role in protecting against PD (Jimenez-Jimenez et al. 2016).

In addition, there are a number of post-mortem studies that do not point to a

protective role of HMT against the pathogenesis of PD. A significantly higher

concentration of histamine – but not of t-MeHA (Rinne et al. 2002) – and accumulated

histaminergic fibres (Anichtchik et al. 2000) was found in the substantia nigra, caudate

nucleus and putamen of PD patients. Moreover, we reported an augmented HMT-

mRNA expression in the same brain regions in PD patients (Shan et al. 2012a). It is as

yet not clear whether the up-regulation of HMT-mRNA is induced by the increased

levels of local histamine, but HMT does not appear to play a protective role in the

inactivation of histamine, as the levels of t-MeHA remained unaltered (Rinne et al.

2002). Moreover, we also observed a negative correlation between HMT-mRNA

expression in the substantia nigra and the disease duration of PD patients (Shan

et al. 2012a). This suggested that the more serious (and thus the shorter lasting) the

disease, the more HMT-mRNA is expressed. Based upon all these data, one could

propose that the process of translation from mRNA to functional enzyme may be

impaired in the basal ganglia of PD patients.

4.3 HMT Expression in Cerebral Cortex Related to Cognition
and Mood State

As we discussed previously, the functional up-regulation of the histaminergic

system in Huntington’s patients may be involved in the cognitive impairment of

this disease. An up-regulation of HMT-mRNA was also found in the inferior frontal

gyrus of Huntington’s disease patients (van Wamelen et al. 2011). In addition,

increased histamine production as reflected by the HDC-mRNA expression (van

Wamelen et al. 2011) and elevated CSF levels of histamine metabolites (Prell and

Green 1991) were both reported in Huntington’s disease.

Altered metabolic activity in the anterior cingulate cortex (ACC) has been consis-

tently reported in the induction of the depressive state in major depressive disorders,

and ACCmetabolism and connectivity were found to be reversed by pharmacological

treatment (Mayberg et al. 2000) or deep brain stimulation (Mayberg et al. 2005),

which successfully improved the symptoms of depression (Kennedy et al. 2011). The

lower HMT-mRNA expression in the ACC of depression patients (Shan et al. 2013a)

may imply histamine level/turnover alterations in this pivotal brain region. This is in

line with a reduction of the H1R binding in the same brain region (Kano et al. 2004).

5 H1R

5.1 Modulation of Cognition and Mood

A reduction of H1R binding was reported in several neuropsychiatric disorders.

Positron emission tomography studies showed that H1R binding, detected by the

radioligand for H1R,
11C-doxepin, was much lower in the frontal cerebral cortex of

266 L. Shan et al.

d.f.swaab@nin.knaw.nl



depressive patients compared to matched controls (Kano et al. 2004; Yanai and

Tashiro 2007). Interestingly, H1R binding in the frontal cortex and cingulate gyrus

decreased in relation to self-rated depressive scale scores (Kano et al. 2004). It was

also reported that the amount of H1R binding is reduced in the frontal and temporal

brain areas of AD patients (Higuchi et al. 2000). More importantly, there is a

correlation between H1R binding and severity of cognitive symptoms (Higuchi

et al. 2000).This alteration seems to be specifically receptor-dependent, because the

binding of another histamine receptor, H2R, was unchanged in AD prefrontal cortex

(Perry et al. 1998). In a post-mortem study, the patients with chronic schizophrenia

also showed a significant reduction in H1R binding in the frontal cortex (Nakai et al.

1991).

Notably, a lack of changes in the H1R-mRNA was observed in the frontal cortex

in depression (Shan et al. 2013a) as well as in AD (Shan et al. 2012b) in our post-

mortem studies. The possible deficits in the translation of H1R-mRNA to the

functional H1R in the cortex in these disorders deserve future attention.

5.2 H1R Antagonists as a Treatment for Insomnia

Many H1R antagonists are able to cross the blood–brain barrier and cause drowsi-

ness (Lieberman 2009). Diphenhydramine, chlorpheniramine, doxylamine and bro-

mpheniramine are over-the-counter medicines with H1R antagonistic activity. They

have been prescribed to treat allergies, cold symptoms, itching, nausea and insom-

nia (Krystal et al. 2013). It should be noted that some antidepressants and anti-

psychotics with a major effect on cholinergic, dopaminergic, serotoninergic and

adrenergic receptors may also act on histamine-related mechanisms that show

beneficial effects on insomnia (Krystal 2009).

A placebo-controlled trial using the selective H1R antagonist doxepin in patients

with chronic primary insomnia (Roth et al. 2007) showed a major effect in terms of

preventing early morning awakening, as well as in terms of improved sleep in the

second part of the night.

6 H2R and Schizophrenia

An early study demonstrated that schizophrenic patients had a higher incidence of

the H2R649G allele polymorphisms located in the coding region of the H2R gene

(Orange et al. 1996). However, a follow-up study with a larger sample size did not

support this association of the allelic variation with schizophrenia (Ito et al. 2000).

In early preliminary open-label clinical trials, the H2R-antagonist famotidine was

shown to have an antipsychotic effect and to reduce negative schizophrenic

symptoms (Kaminsky et al. 1990; Oyewumi et al. 1994; Rosse et al. 1996). The

antipsychotic effects of famotidine were confirmed in a recent randomized clinical

trial. Obvious improvements in both positive and negative symptoms of schizo-

phrenia patients were obtained in that study (Meskanen et al. 2013). The authors of
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this study pointed out that famotidine treatment requires high dosage because of its

low blood–brain barrier penetration. However, a meta-analysis that pooled eight

double-blind randomized placebo-controlled trials with the H2R-antagonists

(famotidine, nizatidine or ranitidine) as adjunctive therapy did not observe any

effect on schizophrenic symptoms (Kishi and Iwata 2015).

7 H3R

7.1 Treatment of Alzheimer’s Disease and Schizophrenia

Various ongoing clinical trials study the use of H3R-antagonist/inverse agonist for

the treatment of AD, PD, narcolepsy, schizophrenia and attention-deficit hyperac-

tivity disorder (Brioni et al. 2011; Passani and Blandina 2011). The neurobiological

basis of this application is that H3R-antagonists/inverse agonists stimulate the

release of histamine, GABA, acetylcholine and dopamine in the brain (Medhurst

et al. 2007; Galici et al. 2009; Giannoni et al. 2010). However, no beneficial effects

emerged in terms of improving cognitive functioning in the application of H3R-

antagonists/inverse agonist for the treatment of AD or mild-to-moderate AD

patients (Egan et al. 2012, Grove et al. 2014, Kubo et al. 2015). On the other

hand, this is in line with the small increase in H3R-mRNA we observed in female

AD patients (Shan et al. 2012b), together with the insignificant changes of H3R-

binding density in the prefrontal cortex reported by another post-mortem study

(Medhurst et al. 2007). To date, H3R inverse agonists also failed to show a

therapeutic effect in schizophrenia (Egan et al. 2013, Haig et al. 2014, Jarskog

et al. 2015).

7.2 Treatment for Hypersomnia

It is noted, however, that preclinical and clinical data indicate the positive effec-

tiveness of H3R-antagonist/inverse agonist for the treatment of daytime sleepiness

in several neurological disorders associated with hypersomnia (Passani and Blandina

2011). In a narcolepsy animal model, i.e. the hypocretin (orexin)-knockout mice, the

administration of Pitolisant yielded significant improvement of the key symptoms of

sleepiness, and it decreased direct onsets of rapid eye movement sleep from wakeful-

ness, which is a diagnostic criterion for narcolepsy (Lin et al. 2008). In both adults and

children with narcolepsy, Pitolisant ameliorated excessive daytime sleepiness (Lin

et al. 2008; Inocente et al. 2012; Dauvilliers et al. 2013). Pitolisant has, therefore, been

approved as orphan drug for narcolepsy.

To date, only few published reports document the treatment effects of H3R-

antagonist/inverse agonist on excessive sleepiness in PD, but various clinical trials

are still ongoing [according to the clinical trial data base (https://clinicaltrials.gov)].
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8 Conclusion and Perspective

Recent data indicate that alterations in several components of the histaminergic

system may contribute to the pathogenesis of neuropsychiatric disorders such as

narcolepsy, schizophrenia, depression, AD and PD (Table 1). The histaminergic

compounds were shown to have novel therapeutic applications. The increased

number of histamine neurons (marked by HDC) in the narcoleptic brain is hypo-

thesized to contribute to the hypnagogic/hypnopompic hallucinations of this disor-

der. HMT was presumed to play a role in the pathogenesis of PD, but the animal

data and human genetic, post-mortem studies failed to show a consistent effect. In

addition, two rare HMT gene mutations were found to lead to intellectual disability.

They deserve to be studied in HMT knockout animal model. A reduction of H1R

binding in the cerebral cortex was observed in AD, depression and schizophrenia,

which may imply that H1R availability is associated with cognitive functions and

mood states. The H1R knockout animal seems to provide a great opportunity for

further studies of such an involvement in cognition and anxiety. H1R antagonists

are a potential effective treatment for insomnia. Preliminary results have shown that

the H2R-antagonist induced a significant improvement of schizophrenic symptoms.

Novel antagonists with higher penetration rate through the blood–brain barrier and

follow-ups in clinical trials are urgently needed. One of the H3R-antagonist/inverse

agonists, Pitolisant, has been approved for clinical treatment for narcolepsy. The

effectiveness of other H3R-antagonist/inverse agonist for the treatment of excessive

daytime sleepiness has to be studied in animal models and clinical trials. The

functional expression of H4R is not yet clear. However, recently an anxiety and

Table 1 Overview of key alterations of brain histaminergic system in neuropsychiatric disorders

Disorders

Histamine production

Key changes of histamine metabolism and

receptors in brain areas

TMN

neurons

HDC-

mRNA

PD – – SN (mRNA HMT "; H3R #, HA level "; H3R

binding ")
PU mRNA (HMT "; H3R#;H4R ";HA level "),
t-MeHA level in CSF�

AD #(�57%) �/#(�20%) PFC mRNA (HMT and H3R "), HA level in

brain"/# in CSF�/"/#
Huntington’s

disease

� "(+63%) IFG mRNA (H1R "; H3R "; HMT ");CN
mRNA (H2R#; H3R#), H2R and H3R binding #.
H1R binding ", t-MeHA in CSF"

Depression � � ACC mRNA (HMT");H1R binding by PET

scanning #in ACC and PFC

Narcolepsy 64 or 94%" N.A. HA level in CSF�/#, t-MeHA level in CSF�
Notes and Abbreviations: " increase, � unaltered, # decrease, CSF cerebrospinal fluid, CN
Caudate nucleus, HDC histidine decarboxylase, HMT histamine methyltransferase, LB, LN
Lewy bodies, Lewy neurites, PU putamen, PFC prefrontal cortex, IFG Inferior frontal gyrus,

SN substantia nigra, TMN tuberomamillary nucleus, NFT neurofibrillary tangles, H1–4R histamine-

1-4-receptor, t-MeHA tele-melthyhistamine
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despair behavioural phenotype of a histamine H4R knockout mice has been

identified by the use of a light–dark box and the tail suspension test (Sanna et al.

2017). The possible role of this novel histamine receptor in the central nervous

system deserves further research in both animal models and patients with neuropsy-

chiatric disorders.
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