ARTICLE IN PRESS

Journal of Affective Disorders **I** (**IIII**) **III**-**III**

Contents lists available at SciVerse ScienceDirect

Journal of Affective Disorders

journal homepage: www.elsevier.com/locate/jad

Research report Unaltered histaminergic system in depression: A postmortem study

Ling Shan^{a,b}, Xin-Rui Qi^{b,c}, Rawien Balesar^b, Dick F. Swaab^b, Ai-Min Bao^{a,b,*}

^a Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China

^b Netherlands Institute for Neuroscience—an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands

^c Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui, PR China

ARTICLE INFO

Article history: Received 18 May 2012 Received in revised form 7 September 2012 Accepted 8 September 2012

Keywords: Histaminergic system Depression Tuberomamillary nucleus Postmortem prefrontal cortex

ABSTRACT

Background: Rodent experiments suggested that the neuronal histaminergic system may be involved in symptoms of depression.

Methods: We determined, therefore, in postmortem tissue of 12 mood disorder patients (8 major depression disorder (MDD) and 4 bipolar disorder (BD)) and 12 well matched controls the expression of the rate-limiting enzyme for histamine production and histidine decarboxylase in the tuberomamillary nucleus (TMN) by quantitative in situ hybridization. In addition we used qPCR to determine the expression of the 4 histamine receptors and of the enzyme breaking down histamine, histamine N-methyltransferase (HMT), in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulated cortex (ACC).

Results: No changes were observed in the expression of these molecules, except for a significant lower HMT mRNA expression in the ACC of MDD subjects.

Limitations: Several inherent and potentially confounding factors of a postmortem study, such as medication and cause of death, did not seem to affect the conclusions. The group size was relatively small but well documented, both clinically and neuropathologically.

Conclusion: Except for a lower HMT mRNA expression in the ACC of MDD subjects, the neuronal histaminergic system did not show significant changes, either in the rate limiting enzyme involved in its production or in its receptors in 2 main projection sites, the ACC/DLPFC.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The neuronal histaminergic system was proposed to be involved in symptoms of depression, such as disturbances in attention, appetite and sleep (Haas et al., 2008). Rodent studies have shown that histamine activates the major stress systems in the hypothalamus that are also involved in the pathogenesis of depression (Ito, 2000). Therefore, the present study investigates whether this system shows alterations in depression, a disorder that is characterized by hyperactive stress systems (Bao et al., 2005).

2. Methods

2.1. Postmortem brain material

Postmortem brain tissues of patients with major depressive disorder (MDD) or bipolar disorder (BD) and of well matched controls were obtained through the Netherlands Brain Bank (NBB) following permission from patients or their next of kin for a brain autopsy and for the use of brain material and clinical data for research purposes. DSM-IV criteria were used for the diagnosis of MDD or BD during life. The criteria for the presence, duration and severity of symptoms of either MDD or BD, as well as the exclusion of other psychiatric and neurological disorders, were systematically scored by a qualified psychiatrist (Drs. W.J.G. Hoogendijk, E. Vermette or G. Meynen). For detailed clinicopathological information on patients and matched controls (see Table 1). Systematic neuropathological analyses were performed on all brains as described before (van de Nes et al., 1998).

2.2. HDC-mRNA in situ hybridization in the TMN

Changes in the neuronal histamine production were studied in formalin-fixed paraffin-embedded hypothalamic tissue by means of in situ hybridization. The expression of the rate limiting enzyme for histamine production, histidine decarboxylase (HDC), in the hypothalamic tuberomamillary nucleus (TMN) was determined in 12 mood disorder subjects (8 MDD and 4 BD). From 11 mood disorder patients, the total number of neurons expressing corticotropin-releasing hormone (CRH) positive neurons in the paraventricular nucleus (PVN) was available from previous work by our group (Bao et al., 2005).

Please cite this article as: Shan, L., et al., Unaltered histaminergic system in depression: A postmortem study. Journal of Affective Disorders (2012), http://dx.doi.org/10.1016/j.jad.2012.09.008

^{*} Corresponding author at: Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China. Tel.: +86 571 88208789.

E-mail addresses: d.f.swaab@nin.knaw.nl (D.F. Swaab), baoaimin@zju.edu.cn (A.-M. Bao).

^{0165-0327/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jad.2012.09.008

	NBB number		Sex	Age at death (yr)	Age at onset (yr)	CTD (h)	MTD	PMD (min)	Fix (d)	CSF pH	Brain weight (g)	Used for	RIN value (DLPFC)	RIN valve (ACC)	Cause of death
atients	99-118	BD	М	68	32	23:15	10	355	33	6.82	1204	TMN, DLPFC	7.7	-	Cardiac ischemia
	00-111	BD	Μ	70	35	2:45	10	290	43	6.26	1490	TMN, DLPFC	8.10	-	Cardiac arrest
	00–088	BD	М	73	28	9:30	1	315	36	6.38	1260	TMN, ACC, DLPFC	7.2	7.5	Dehydration
	02-014	BD	Μ	68	66	2:45	2	1106	-	6.64	1424	ACC, DLPFC	8.1	7.2	Subdural hematoma after a fall
	06-075	BD	F	80	45	9:30	10	570	37	6.33	1190	ACC, DLPFC	6.3	6.3	Acute heart death
	00-074	BD	Μ	78	68	23:00	6	455	47	6.27	1227	ACC, DLPFC	7.3	6.7	Metastatized colon carcinoma
	07-076	BD	F	79	31	3:10	11	445	-	6.25	1231	DLPFC	7.2		Sudden death
	06-021	BD	М	70	64	13:07	3	383	44	6.5	1488	ACC, DLPFC	7.1	7.0	Pneumonia and sever neck trauma
	07-060	BD	М	93	78	21:10	9	360	45	6.37	1459	ACC	-	7.7	Sudden death
	97-058	BD	F	90	35	10:15	5	390	33	N.D.	1143	ACC, DLPFC	7.4	7.1	Pulmonary embolism
	92-003	MD	F	55	40	7:45	11	294	52		1320	TMN	_	_	Heart failure
	94-112	MD	M	61	50	4:40	10	2420	42		1424	TMN	_	_	Pneumonia
	94-032	MD	M	71	53	16:15	2	975	38		975	TMN	_	_	Pneumonia, cerebral ischemia,
	94-055	MD	F	72	53	4:20	4	1705	35		1116	TMN		_	Heart failure, septic shock, pyelonephrit
	94-017	MD	F	72	55	19:00	1	1320	39		1287	TMN		_	Pneumonia
	95–036	MD	M	72	74	17:05	3	3775	35		1237	TMN		_	Strangulation (suicide)
	93-030 93-115	MD	M	74 79	74	17:50	9	1270	28		1530	TMN	-	-	Jump off from floor (suicide)
					40					6.50			- 7.2	-	
	02-051	MD	М	81	48	15:30	6	360	34	6.50	1345	TMN, ACC, DLPFC	7.3	8.0	Renal insufficiency
	01-074	MD	Μ	45	32	2:30	6	420	54	6.55	1427	ACC, DLPFC	8.00	7.0	Brainstem hemorrhage
	06-011	MD	F	60	54	16:10	1	260	34	N.D.	1080	ACC, DLPFC	8.90	8.0	Legal euthanasia because of metastasize mammary carcinoma
	06-026	MD	М	70	47	8:00	3	435	40	6.55	1415	ACC, DLPFC	8.40	7.9	Respiratory insufficiency
	07-033	MD	M	88	69	21:15	5	397	34	6.26	1225	ACC, DLPFC	7.30	7.0	Multiple epileptic seizures
	07 055	MD									1225	nee, blire	7.50		maniple epilepile scizures
edian (TMN)			72	49	15:30	6	975	36	6.44	1320			-	-	
edian (DLPFC)			72	46	9:52	6	394	37	6.44	1246			7.3		
edian (ACC)			76	51	11:41	5	394	37	6.44	1303				7.15	
EM (TMN)			2	4	2:05	1	334	2		50			-	-	
EM (DLPFC)			3	4	2:00	1	55	2	0.05	36			0.18	-	
EM (ACC)			4	5	1:59	1	63	2	-	39			-	0.16	
ontrols		C-1	F	54	-	N.D.	4	780	31	-	1080	TMN	-	-	Traffic accident
	92-042	C-2	Μ	61	-	21:00	4	830	52	-	2220	TMN	-	-	Sudden death
	99-033	C-3	F	61	-	23:15	7	1065	44	-	902	TMN	-	-	Acute heart failure
	98-122	C-4	Μ	66	-	0:00	6	2460	49	-	1461	TMN	-	-	Spetic shock
	99-101	C-5	Μ	69	-	3:30	8	1155	41	-	1337	TMN	-	-	Pneumonia
	92-049	C-6	Μ	71	-	N.D.	4	340	32	-	1250	TMN	-	-	Sudden death
	06-028	C-7	Μ	76	-	20:00	4	1175	27	-	1514	TMN	-	-	Acute cardiac arrest
	97-156	C-8	F	77	-	8:30	11	160	47	-	1235	TMN	-	-	Septic shock
	94-039	C-9	М	78	_	12:00	1	3180	88	6.89	1354	TMN	_	_	Cardiac infarction
	99-116	C-10	М	78	_	16:15	9	260	43	6.98	1310	TMN	_	_	Pancreatic cancer
	93-059	C-11	M	78	_	12:10	1	362	70	7.03	1340	TMN	_	_	Cardio pulmonary insufficiency
	98-055	C-12	M	85	_	12:10	4	1280	31	6.31	1290	TMN	_	_	Cardiac infarction
	99–111	C-12 C-13	F	88	_	3:05	9	340	-	6.67	1054	DLPFC	6.9	_	Respiration insufficiency
	05-034	C-13 C-14	M	56	-	0:01	5	840	_	7.03	1323	DLPFC	8.5	-	Terminal congestive heart failure
	05-034	C-14 C-15	M	56 66	-	17:45	5 5	840 465	_	7.03 6.7	1323	DLPFC DLPFC		_	Ruptured abdominal aorta aneurysm
		C-15 C-16		75	-		э 3	465 380				DLPFC DLPFC	7.8 7.3		1 5
	01-033		M		-	6:10			-	6.18	1180			-	Dehydration, adenocarcinoma, pneumo
	97-156	C-17	F	77	-	8:30	11	160	-	6.37	1235	DLPFC	8.2	-	Septic shock
	00-067	C-18	Μ	73	-	0:01	6	1485	-	-	1267	DLPFC	7.8	-	Pulmonary embolism
	01-086	C-19	Μ	88	-	3:00	7	420	-	6.84	1398	DLPFC	8.1	-	Heart failure
	96-052	C-20	Μ	73	-	11:30	5	550	-	-	1500	DLPFC	8.5	-	Cardiac arrest due to tamponade
	97-039	C-21	Μ	87	-	15:00	4	240	-	6.94	1506	DLPFC	8.3	-	Cardial infarction
	98-006	C-22	Μ	50	-	11:00	1	510	-	6.65	1436	DLPFC	7.5	-	Cardiac arrest, sepsis
	00 000														

L. Shan et al. / Journal of Affective Disorders I (IIII) III-III

05-06 C3 M 56 - 4-45 10 55 2 54 153 ACC 2 74 2 200 3 6 7 123 ACC DIPC 33 81 Broundoractional 04-057 C37 F 71 - 230 3 6 1123 ACC DIPC 83 81 Broundoractional 04-057 C37 F 81 - 400 3 63 65 132 ACC 153 C40biagocarcional 04-037 C32 M 87 - 400 3 63 63 63 63 64 120 ACC 123 C40biagocarcional 97-143 C30 M 87 - 64 1392 ACC 2 73 Reguidacional C40biagocarcional 97-143 C30 M 87 53 64 1392 ACC 2 73 C40																				L	S	han	et al. / Jo	urnal
7 56 - 4:45 10 553 32 6.54 153 ACC DLPFC 8 3 8:1 77 - - 7:55 7 500 33 6.7 1125 ACC, DLPFC 8:3 8:1 77 - - 7:55 7 500 42 6.46 1164 ACC, DLPFC 8:3 7.15 81 - - 13:10 8 400 33 6.32 1355 ACC, DLPFC 8:3 7.55 1 79 - - 4:00 3 6.32 1392 ACC - 7.5 1 79 - 14:30 6 45 6.51 1392 ACC - 7.4 1 79 - 14:15 5 948 470 - 7.5 - 7.4 1 86 - 1312 ACC - 7.4 - 7.4	Cardial infarction	Bronchocarcinoma	Cachexia and uremia	Legal euthanasia because of metastasized	cholangiocarcinoma	Pneumonia, heart infarction,	renal insufficiency	Ruptured abdominal aorta aneurysm	Metastasized adeno- and lung carcinoma	Cardiac infarction	Renal insufficiency	Unknown	Pneumonia caused by aspiration										on time; MD, major depressive disorder; MTD, hours.	
56 - 4.45 10 555 32 6.54 1553 ACC DLPFC 6.1 77 - $7:55$ 7 500 42 6.48 1312 ACC, DLPFC 6.1 81 - 13:10 8 400 33 6.16 1164 ACC, DLPFC 6.1 81 - 13:10 8 400 33 6.32 1356 ACC $DLPC$ 8.2 89 - - $4:0$ 33 6.32 1356 ACC $DLPC$ 8.2 89 - - $4:0$ 353 6.32 1320 ACC $DLPC$ 6.1 80 - $6:10$ 353 30 6.10 ACC $D.760$ ACC $D.780$ 80 - 1232 323 31 6.7 1204 ACC $D.780$ 80	7.9	8.1	5.9	7.5		7.5		7.1	8.6	8.5	5.4	7.8	7.4	I	I	7.50	I	I	0	ı	I	0.582 ^a	tex; Fix, fixati ; yr, years; h,	
1 56 - 4:45 10 555 32 6.54 1553 ACC DIPFC 77 - - 7:55 7 500 42 6.48 1312 ACC, DIPFC 81 - - 7:55 7 500 42 6.48 1312 ACC, DIPFC 81 - - 13:10 8 400 33 6.16 1164 ACC, DIPFC 81 - - 13:10 8 400 33 6.32 1356 ACC 82 - - 4:00 3 6:20 33 6:32 1392 ACC 1 79 - 14:30 4 5708 ACC ACC 88 - - 132 3 6:96 1568 ACC 87 - - 1332 31 6.7 1332 ACC 88 - - 1322 33	I	8.3	6.1	8.2		I		ı	I	ı	I	I	I	I	7.80	ı	I	0.29	0.34	I	0.259 ^a	I	frontal cor ry nucleus;	
56 - $4:45$ 10 555 32 6.54 1553 77 - $2:00$ 4 300 38 6.7 1125 81 - $7:55$ 7 500 42 6.48 1312 81 - $7:55$ 7 500 33 7.16 1164 81 - $4:00$ 3 620 33 6.32 1356 1 87 - $4:00$ 3 620 33 6.32 1366 1 79 - $4:00$ 3 620 33 7.08 1392 1 79 - $4:10$ 360 45 6.51 1392 1 86 - $14:30$ 6 47 6.51 1392 1 86 - $14:30$ 6 43 6 6.56 1392	ACC	ACC, DLPFC	ACC, DLPFC	ACC, DLPFC		ACC		ACC	ACC	ACC	ACC	ACC	ACC										C, dorsolateral pre IN, tuberomamilla	
1 56 - $4:45$ 10 555 32 6.54 77 - 2:00 4 300 38 6.7 81 - - 7:55 7 500 42 6.48 81 - - 7:55 7 500 33 7.16 81 - - 7:50 3 6.32 6.51 81 - - 4:00 3 6.20 33 6.32 82 - - 4:00 3 6.20 33 6.32 1 79 - - 4:00 3 6.20 33 6.32 1 79 - 21:30 12 385 30 6.46 6.51 1 87 - 13:27 2 325 31 6.7 708 1 87 - 13:27 2 323 31 6.7 708 88 - 13:26 1 247 3 - 747 3	1553	1125	1312	1164		1356		1210	1392	1547	1400	1568	1204	1294	1310	1392	394	48	34	0.862 ^a	0.646^{a}	0.686 ^a	days; DLPF viation; TM	
1 56 - 4:45 10 555 32 7 - 2:00 4 300 38 77 - 7:55 7 500 42 81 - 13:10 8 400 33 1 87 - 4:00 3 620 33 1 87 - 4:00 3 620 33 1 79 - 4:00 3 620 33 1 79 - 6:10 10 366 45 1 79 - 9:05 4 610 38 1 87 - 13:27 2 323 31 1 86 - 13:27 2 323 31 68 - 13:27 2 323 31 36 33 3 - 13:27 2 323 31 36 33 31 68 - 13:27 2 323 31 3	6.54	6.7	6.48	7.16		6.32		6.46	6.51	7.08	6.22	6.96	6.7	I		6.65	I	0.11	0.09	ı	0.073 ^a	0.262 ^a	ıal fluid; d, tandard de	
1 56 - $4:45$ 10 555 7 - $2:00$ 4 300 77 - $7:55$ 7 500 81 - 13:10 8 400 87 - 4:00 3 620 89 - 21:30 12 385 79 - 9:05 4 610 89 - 9:05 4 610 1 87 - 9:05 4 610 1 87 - 13:27 2 323 68 - 14:15 5 948 78 - 13:27 2 323 68 - 13:27 2 336 78 - 13:27 1 346 78 - - 13:27 2 347 3 - 13:27 1 247 347 3 - 13:27 1 247 346 3 -	32	38	42	33		33		30	45	38	52	33	31	43	I	I	ę	I	I	0.204 ^a	I		cerebrospin nber; SD, s	
1 56 - 4:45 10 7 - 2:00 4 77 - 7:55 7 81 - 13:10 8 83 - 4:00 3 89 - 2:1:30 12 89 - 4:00 3 89 - 4:00 3 179 - 6:10 10 187 - 9:05 4 188 - 9:14:30 6 188 - 14:15 5 198 - 13:27 2 188 - 13:27 2 198 - 13:27 2 198 - 13:27 2 68 - 13:27 2 80 - 13:27 2 81 - 13:27 1 3 - 13:27 1 3 - 13:27 1 3 - 12:66 0.632 ^b	555	300	500	400		620		385	360	610	270	365	323	948	380	420	247	318	68				eath; CSF, c tegrity nur	
1 56 - 4:45 77 - 2:00 81 - 13:10 83 - 4:00 87 - 4:00 89 - 4:00 89 - 4:00 89 - 4:00 13:10 - 4:00 89 - 4:00 13:27 - 4:00 89 - 9:05 1 - 14:15 88 - 14:15 78 - 13:27 68 - 13:27 68 - 13:27 78 - 13:26 78 - 13:27 78 - 13:27 3 - 13:27 3 - 13:27 3 - 13:26 0.581a - 0.495 ^b 0.581a - 0.266 ^b 0.418 ^a - 0.266 ^b 0.418 ^a -	10	4	7	8		ę		12	10	4	9	10	2	5	5	9	1	1	1	0.632 ^b	0.565 ^b		time at de V, RNA int	
 76 74 77 81 81 87 89 79 79 79 79 68 79 68 79 68 79 68 79 68 79 68 73 68 68 68 73 60 68 68 73 60 68 68 68 68 79 63 64 63 64 65 64 64 64 64 64 64 64 64 65 64 64 65 64 <	4:45	2:00	7:55	13:10		4:00		21:30	6:10	9:05	14:30	8:05	13:27	14:15	12:00	8:05	4:04	1:57	1:26	0.495 ^b	0.806^{b}	0.266 ^b	ı; CTD, clock em delay; RII	
77 77 81 81 81 81 87 89 80 80 80 83 3 3 0.795 ^a 0.795 ^a 0.795 ^a 0.795 ^a 0.795 ^a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	I	I	I	I		I		I	I	I	I	I	I	ı	I	I	I	I	I	ı	I	ı	r depressior , post morte	
	56	74	77	81		87		89	79	68	80	87	96	68	78	80	e	ę	e	0.795 ^a	0.581 ^a	0.418 ^a	BD, bipola nined; PMD	
A M M M M M M M M M M M M M M M M M M M	Μ	Σ	ч	ч		Σ		ц	Σ	Δ	Σ	Σ	Σ										d cortex; ot determ	
C-24 C-25 C-25 C-27 C-28 C-28 C-31 C-31 C-31 C-33 C-33 C-33 C-34 C-33 C-34 C-33 C-34 C-33 C-34 C-28 C-28 C-26 C-26 C-26 C-26 C-26 C-26 C-26 C-26	C-24	C-25	C-26	C-27		C-28		C-29	C-30	C-31	C-32	C-33	C-34										ingulate s; ND, no	
05–068 05–019 04–049 04–049 04–057 05–017 05–017 05–013 97–143 97–043 97–043 97–043 97–043 97–043 97–043 97–043 97–043 97–043 05–075 05–075 05	05-068	05-019	04-049	04-057		05-017		06-080	97-143	97-043	95-062	05-073	04-020	Median (TMN)	Median (DLPFC)	Median (ACC)	SEM (TMN)	SEM (DLPFC)	SEM (ACC)	Level of significance (TMN)	Level of significance (DLPFC)	Level of significance (ACC)	Abbreviations: ACC, anterior c month of death; min, minutes	^b Mann–Whitney-U-test. ^b Mardia–Watson-test.

L. Shan et al. / Journal of Affective Disorders I (IIII) III-III

2.3. Quantitative PCR (qPCR) study in the frozen PFC

In addition, the mRNA expression of the four histamine receptors H₁₋₄R and of the enzyme that breaks down histamine, histamine N-methyltransferase (HMT), was determined by qPCR in snap frozen tissue of the prefrontal cortex (PFC), which is a major site of termination of the histaminergic system. Primer sequences were described previously (van Wamelen et al., 2011). qPCR was performed in the dorsolateral PFC (DLPFC) in 14 mood disorder patients (5 MDD and 9 BD) and 14 matched controls, and in the anterior cingulated cortex (ACC) of 12 mood disorder patients (5 MDD and 7 BD) and 12 controls. Primer sequences for the reference genes glyceraldehyde-3-phosphate dehydrogenase. actin- β , hydroxymethylbilane synthase, hypoxanthine phosphoribosyltransferase 1, ubiquitin C, tubulin- α , and tubulin- β 4 have been described before (Wang et al., 2008).

Detailed procedures of in situ hybridization and qPCR were published in our previous study (Liu et al., 2010; Shan et al., 2012).

2.4. Statistical analyses

The differences between the groups were statistically evaluated by the Mann-Whitney U test and correlation was tested with the Spearman test. P < 0.05 level (two-tailed) was considered to be statistically significant.

3. Results

3.1. TMN

The HDC-mRNA levels in the TMN showed no significant differences between the mood disorder patients and the matched controls (P=0.453), or between MDD and matched controls (P=0.529), or between BD and matched controls (P=0.773). No correlation was found between HDC-mRNA and the number of CRH-expressing neurons in the mood disorders group (P=0.190, n=11). Because of the relatively limited number of subjects, correlations in the subgroups of BD, MDD and in their matched controls were not performed.

3.2. DLPFC and ACC

The mRNA expression levels of the H₁₋₄R and of HMT of mood disorder patients and matched controls did not differ significantly either in DLPFC or ACC ($P \ge 0.117$). Unaltered histaminergic gene expressions in ACC or DLPFC were also observed in both MDD and BD with their matched controls ($P \ge 0.172$), except for a just significant lower HMT mRNA expression in the ACC of MDD and their matched controls (P=0.047).

4. Discussion

In general, except for a lower HMT mRNA expression in the ACC of MDD subjects, the neuronal histaminergic system did not show significant changes, in the rate limiting enzyme involved in its production and in its receptors in 2 main projection sites, the ACC/DLPFC.

The absence of a difference in the HDC experiment in depression and the lack of correlation between HDC-mRNA and the number of CRH-expressing neurons indicates that changes in the histaminergic system do not play a key role in the pathogenesis of depression. It should be noted that a higher histamine level was found in rat hypothalamus in an acute stress model. Moreover,

Please cite this article as: Shan, L., et al., Unaltered histaminergic system in depression: A postmortem study. Journal of Affective Disorders (2012), http://dx.doi.org/10.1016/j.jad.2012.09.008

ARTICLE IN PRESS

L. Shan et al. / Journal of Affective Disorders I (IIII) III-III

several acute and chronic stress models showed increased histamine turnover (Ito, 2000). These seemingly discordant results show that animal models may insufficiently elucidate key aspects of the etiology and pathophysiology of depression (Neumann et al., 2011). Systematic validation of animal model results on patients and human material is thus necessary.

To the best of our knowledge, there has been no report so far of altered HMT in the MDD brain. The histamine degradation requires, however, the co-enzyme S-adenosyl-methionine (SAMe) as methyl donor (Haas et al., 2008). We have noted that various studies indicated that the administration of SAMe, a major methyl-donor for the synthesis of brain amines and maintenance of phospholipid cell membranes can be an effective treatment strategy for MDD patients (Nelson, 2010), while low levels of SAMe are present in the cerebrospinal fluid of severely depressed patients (Bottiglieri et al., 1990). Whether the lower HMT-mRNA in MDD we observed may be related to the generally lower level of methylation of histamine warrants further confirmation.

A positron emission tomography study in 10 age-matched controls and 10? MDD subjects showed that H₁R binding was much lower in the frontal, temporal and occipital cortex, and in the cingulate gyrus of depressed patients than in those structures in controls (Kano et al., 2004). In contrast, our study showed that the H₁R-mRNA expression level was unchanged in depression. It should be noted that we studied two other brain areas, i.e. the ACC (Brodman 24) and the DLPFC (Brodman 9), while Kano et al. (2004) studied the cingulate gyrus (Brodman 32) and PFC (Brodman 10 and 44). An alternative explanation for the discrepancy may be the age difference. In our study the subjects are much older (mean \pm SD in DLPFC 73 \pm 12 years of age and in ACC 75 ± 14 years of age) than in the Kano et al. (2004) study (41 + 12 years of age). The unchanged H₃R-mRNA expression in the DLPFC in MDD and BD is in agreement with recent H₃R radioligand binding assays in postmortem PFC (Jin et al., 2009).

Abundant experimental data show that the neuronal histaminergic system plays a key role in sleep–wake regulation (Haas et al., 2008). At present it is not clear, however, whether alterations in the histaminergic system–or rather in the circadian system (Zhou et al., 2001)–are of primary importance where the lack of day–night fluctuations in depression is concerned. Further studies with larger samples and systematic circadian time points are warranted to study this point.

Role of funding source

This work was supported by the China Scholarship Council for State Scholarship Fund [Grant number (2007) 3020] to Dr. Ling Shan. Dr. A.-M. Bao and Prof. Dick F. Swaab were supported by the China Exchange Program of the Royal Netherlands Academy of Arts and Sciences (KNAW) (Project 10CDP037). The funding sources had no further role in study design, in the collection, analysis and interpretation of data, in the writing of the report, and in the decision to submit the paper for publication.

Conflict of interest

None.

Acknowledgments

The authors are grateful to the Netherlands Brain Bank (Director Dr. Inge Huitinga) for providing human brain material and clinical details, and to Unga Unmehopa, Bart Fisser and Arja Sluiter for technical support. The authors also would like to acknowledge Willem Kamphuis, Sabina Luchetti and Wilma Verweij for comments and corrections of the manuscript.

References

- Bao, A.M., Hestiantoro, A., Van Someren, E.J., Swaab, D.F., Zhou, J.N., 2005. Colocalization of corticotropin-releasing hormone and oestrogen receptoralpha in the paraventricular nucleus of the hypothalamus in mood disorders. Brain 128 (Pt 6), 1301–1313.
- Bottiglieri, T., Godfrey, P., Flynn, T., Carney, M.W., Toone, B.K., Reynolds, E.H., 1990. Cerebrospinal fluid S-adenosylmethionine in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine. Journal of Neurology, Neurosurgery, and Psychiatry 53 (12), 1096–1098.
- Haas, H.L., Sergeeva, O.A., Selbach, O., 2008. Histamine in the nervous system. Physiological Reviews 88 (3), 1183–1241.
- Ito, C., 2000. The role of brain histamine in acute and chronic stresses. Biomedicine and Pharmacotherapy: Biomedecine and Pharmacotherapie 54 (5), 263–267.
- Jin, C.Y., Anichtchik, O., Panula, P., 2009. Altered histamine H3 receptor radioligand binding in post-mortem brain samples from subjects with psychiatric diseases. British Journal of Pharmacology 157 (1), 118–129.
- Kano, M., Fukudo, S., Tashiro, A., Utsumi, A., Tamura, D., Itoh, M., et al., 2004. Decreased histamine H1 receptor binding in the brain of depressed patients. European Journal of Neuroscience 20 (3), 803–810.
- Liu, C.Q., Shan, L., Balesar, R., Luchetti, S., Van Heerikhuize, J.J., Luo, J.H., et al., 2010. A quantitative in situ hybridization protocol for formalin-fixed paraffin-embedded archival post-mortem human brain tissue. Methods 52 (4), 359–366.
- Nelson, J.C., 2010. S-adenosyl methionine (SAMe) augmentation in major depressive disorder. American Journal of Psychiatry 167 (8), 889–891.
- Neumann, I.D., Wegener, G., Homberg, J.R., Cohen, H., Slattery, D.A., Zohar, J., et al., 2011. Animal models of depression and anxiety: what do they tell us about human condition? Progress in Neuro-Psychopharmacology and Biological Psychiatry 35 (6), 1357–1375.
- Shan, L., Bossers, K., Unmehopa, U., Bao, A.M., Swaab, D.F., 2012. Alterations in the histaminergic system in Alzheimer's disease: a postmortem study. Neurobiology of Aging 33 (11), 2585–2598.
- van de Nes, J.A., Kamphorst, W., Ravid, R., Swaab, D.F., 1998. Comparison of betaprotein/A4 deposits and Alz-50-stained cytoskeletal changes in the hypothalamus and adjoining areas of Alzheimer's disease patients: amorphic plaques and cytoskeletal changes occur independently. Acta Neuropathologica 96 (2), 129–138.
- van Wamelen, D.J., Shan, L., Aziz, N.A., Anink, J.J., Bao, A.M., Roos, R.A., et al., 2011. Functional increase of brain histaminergic signaling in Huntington's disease. Brain Pathology 21 (4), 419–427.
- Wang, S.S., Kamphuis, W., Huitinga, I., Zhou, J.N., Swaab, D.F., 2008. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Molecular Psychiatry 13 (8), 786–799 41.
- Zhou, J.N., Riemersma, R.F., Unmehopa, U.A., Hoogendijk, W.J., van Heerikhuize, J.J., Hofman, M.A., et al., 2001. Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Archives of General Psychiatry 58 (7), 655–662.